The Effect of GDNF on the Expression of Retinal EAAT-1 and GS of Rats after Optic Nerve Axotomy
نویسندگان
چکیده
Objective: To investigate the effect of exogenous Glial cell derived neurotrophic factor (GDNF) on the expression of retinal excitatory amino acid transporter-1 (EAAT-1) and glutamine synthetase (GS) of rats after optic nerve axotomy. Methods: Right unilateral optic nerve crush (ONA) model of Sprague-Dawley rats (56) was established, and divided into 4 groups randomly. Right eyes of each group were injected intravitreously 1 μg (test 1 group), 2 μg (test 2 group ), 3 μg ( test 3 group) GDNF, and 0.1 M phosphate buffered saline (negative control group) after ONA immediately. Injections were repeated 7 days after ONA. The left eyes of negative control group were intact, and served as normal control group. FluoroGold was injected into the superior colliculi of 2 rats out of each group to retrogradely label retinal ganglion cells in order to examine the optic nerve axotomy. The expression of GS, EAAT-1 of each group was tested with immnohistochemisty 14 and 21 days after ONA. Results: Retinal ganglion cells axotomy were confirmed by FluoroGold retrogradely labeling. The expression of EAAT-1, GS of normal control group and test 2 group was high significantly than that of negative control group at 14, 21 days after ONA. The expression of GS of test 3 group was also high significantly than that of negative control group at 14 days after ONA. The expression of EAAT-1, GS of test 1 group was lower than that of normal control group at 21 days after ONA. Conclusion: Exogenous GDNF injected intravitreously with adequate dose can enhance the expression of EAAT-1, GS after optic nerve axotomy.
منابع مشابه
Deprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy
During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...
متن کاملDeprenyl changes the expression of Trk-B and P75 NTR receptors in rat after sciatic nerve axotomy
During development many of neurons die by the phenomenon named programmed cell death or apoptosis and this reaction is regulated by neurotrophin (BDNF, NGF, NT3 and NT4/5). These neurotrophins bind to two different classes of transmembrane receptor proteins, the Trks and P75 NTR. Axotomy can induce apoptosis after birth and deprenyl is a an inhibitor of monoamineoxidase type-B and seems to act ...
متن کاملThe TAT protein transduction domain enhances the neuroprotective effect of glial-cell-line-derived neurotrophic factor after optic nerve transection.
Glial-cell-line-derived neurotrophic factor (GDNF) acts as a potent survival factor for many neuronal populations, including retinal ganglion cells (RGC), indicating a potential therapeutic role of GDNF for neurological disorders. To enhance the tissue distribution and applicability of the neurotrophin, we linked it to a protein transduction domain derived from the HIV TAT protein and tested it...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملDeprenyl increases synaptophysin and choline acetyltransferase in rat after sciatic nerve axotomy
Neuroprotective effect of deprenyl on motoneurons of spinal cord after axotomy of peripheral nerves such as sciatic has been well established. Deprenyl is an inhibitor of monoamine oxidase type-B (MAO-B). The main function of this agent is the release of neurotransmitters from pre-synaptic terminals. Acetylcholine is a neurotransmitter that is synthesized by choline acetyltransferase (ChAT) and...
متن کامل